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THERMAL SHOCK IN A DOMAIN WITH A CRACK* 

V.A. KOZLOV V.G. MAZ'YA and V.Z. PARTON 

Thermal shock, i.e., theaction of stresses caused by an abrupt change 
in temperature, in a plane with a semi-infinite slit, is investigated. 
It is assumed thattheplane has zero temperature at the initial instant, 
and a certain non-zero temperature acts instantaneously on the slit. 
The main result is the representation (5.8) of the tensile stress 
intensity factor SIF). The Laplace transform of the SIF is found by 
using a.method proposed in /l/ for evaluating the coefficients in the 
asymptotic form of the solutions of elliptical boundary value problems 

near a boundary singularity. Such an approach enables one to 
find the SIF bypassing the solution of the initial dynamical 

thermoelasticity problem. 
Asymptotic expressions for the SIF are derived from the formulas for 

the SIF, as well as for the time of fracture under instantaneous cooling 
of the crack edges. Thermal shock is also considered in a bounded plane 
domain with a rectilinear slit. It is shown that the principal term of 
the SIF asymptotic form for small values of time agrees with the SIF for 
the same problem in a plane with a slit. The expectation value of the 
heat shock can be obtained by the simultaneous solution of the heat 
conduction equation andthethexmoelasticity system taking inertial terms 
into account. The first analytic solution of such a dynamic problem 
was found in /2/, where the thermal shock was considered in an elastic 
half-space for sudden heating of its boundary. References to other 
literature in the same area can be found in /3/. 

I. Formulation of the boundary value problems. pie will confine ourselves to 
considering plane strain; the case of the plane state of stress for zero heat transfer from 
the external medium is obtained by replacing the Lam6 constant h by h, = 2?+((h -j- @), and y 

by Y* = (1 - Zv)y/(l -v), where y = 2par(1 + v)/(l - 2~). p is the shear modulus, aT is the 
coefficient of linear expansion, and Y is Poisson's ratio. 

Let G be a plane with an excluded semi-axis r = {z = (xl,5.J : z, = 0, z1 < 0). We assume 
that at the initial instant C has zero temperature and the slit' r then instantaneously 
acquires a constant temperature T,. The temperature drop results in the generation of a 
state of stress in G and it is required to determine the stress intensity factors KX (8) and 

RI1 W. 
Mathematically the problem becomes the following. The temperature T is determined from 

the solution of the bollndary value problem 

aTi& - aZAT = 0 on G x (0, co) (1.1) 
T = T, on I' x (0, GG); T = 0 for t = 0 

The displacement vector u generated by this temperature field is found from the solution 
of the following boundary value problem: 

--p@ulat2 + pAu -I- (h + p)grad div u = y grad T on (1.2) 
G x (0, ~1 
uz2 = yT, uzl = 0 on r x (0, CO) 
u = duldt = 0 for t = 0 
('J,, = h div US,, -t 2p @?J%l + knl%J) 

To simplify the computations we temporarily assume that a=l and T,=1, 

2. Determination of the temperature. After a LapLace transformation, we obtain 
the following boundary value problem from (1.1): 
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pT - AT = 0 on G; T = p-’ on I? 

We seek T in the form 

Then 

T(p,q, la)= T TF (P, E, 4 exp ci4) dE 
-co 

TF (P, E, 4 = t (P, E) exp (--‘VP + Ee 4 

By virtue of the evenness of the function T, we obtain that 

~T/c~x, = 0 for x2 = 0, x1 > 0 

Therefore T(Pl 5)lf/p is an analytic function for ImE> while r (P7 E) - P-’ w 
is an analytic function for ImE< 0. Utilizing the formula 

S(E)? I 
1 

&t&(4 -iO) - 2Xi(F, + i0) (2.1) 

we find 
P-V' 

't (p, E) = - zni (f + io) (P”’ + W’* (2.2) 

3. Asymptotic form of the stresses at the slit apex. It follows from /4/ that 
the same asymptotic formula is valid for the Laplace transform of the displacement u(p,x,,x,) 

as r-F0 as in the case of the plane static problem of elasticity theory. The following 
representation /5/ holds for the stress intensity factors Kr (P) and KII (P) 

K*(p)= yS grad T{jdx - ~5 Tci dx,, j= I, II (3.1) 
G r 

where fj(P9 5) isthe solution of the homogeneous problem 

-pp2U + PAU + (h + p) grad div U = 0 on G 

u 22 = (Jz1 = 0 on r with the following asymptotic form as I+ 0: 

jj (p, x) = 2’ (x) + O(1) 

(&jr Zej) (r, e) = [2 (1 + x) (2nr)'V q,"(e) 
I++ (e) = ((2x + 1) cos a/,9 - 3 cos V,e, (1 - 2x) sinV,e + 
3 sin v,e) 

1pI1 (e) = (sin vze - (2~ + 1) sin v,e, cos v,e + (1 - 
2x) cos "/$I) 

where x = 3 - 4v for plane strain and X = (3 -v)/(l iv) for the plane state of stress. 
It can be verified that condition (3.3) is equivalent to the asymptotic form 

5' (p, 5) - zj (x)7 P + 0 

The function cj are constructed below in explicit form. 
Integrating by parts in (3.1), we find 

K,(p)==-y!TdivC’dx 

(3.2) 

(3.3) 

(3.4) 

4. Construction of the functions cj. Let (ut, u?j be a solution of problem (3.2). 
Me introduce the wave potentials 'PI? 'pz /6/ 

Ql acc 
u~=~-TGy (4.1) 

Then as is well-known 

~,,~Aq,-p~cp,=O on G, n=l, 2 

(c1 = I/(X + 211)/p, c, = 1/p/p) 

The boundary conditions on the slit have the form 

(4.2) 

(4.3) a,,=hAq,+2@&-)=0 On r 
al, al, 
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It follows from the asymptotic form (3.4) that the vector u _ 5' should be subject to 
the conditions 

n, (P, %r -x*) = (-l)n+QL, (p, x1, x2), n = 1, 2 

The following equalities therefore result: 

Let us examine problem (4.2) in the half-space zz>O and let us append the condition 

a 12 -- - 0, 92 -= Cl for 3% = 0, xl > 0 (4.4) 

to (4.3). 

We will seek the functions (P,, in the form 

(4.5) 

We obtain from (4.2) 

Here that branch of the root has been selected for which the real part is positive for 

Re p > 0. 
As is usual, g, and g_ are henceforth functions that are analytic in the upper and 

lower half-planes, respectively, such that g = g, - g_. We obtain from the second relation- 
ship in (4.4) that (Dz is continued analytically into the upper half-plane, i.e. $ = CD,,. 

Because o12=0, for x,=0, --oo<x,<m, we find 

(4.7) 

We obtain from the first relationship in (4.3) 

(5" + '12Y a'1 (P, E) + %l@z (P? E) = f_(P? 5) 

where f_ is a function analytic for ImE<O. 
Using (4.7), we arrive at the equality (R is the Rayleigh function) 

-qj$ @, (P, E) = f_ (p, E) (4.8) 

R (P, E) = (E” + qz’)’ - 4E%r), 

Let us present known information concerning the function R (see /6, 7/, say). The func- 
tion llR has four branch points E = tic,-'p, E = tic,-‘p 
CR is the surface wave, the Rayleigh wave, velocity,<.e., cs 

and two poles E, = +icRwlp, where 

is the positive Got of the 
equation 

We set 

(2 - c*-V)Z - 41/l - cl-v 1/l - C?-v = 0 

D (p, E) = 2 (Q - c;“) pp ‘“i;; 5a) 

The function D is represented in the form of the product 

D (P> E) = D+(P, E)D@ 5) 

q(a)= arctg 
4cC'Jf/c,-~ - aa Vu'-- c;* 

(2&- CI")' 

(4.9) 

Factorization of the function 11 has the form 

(4.10) 
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Those branches of the roots are taken on the right for which the real part is positive 
for a positive real part of the radicand. 

Utilizing (4.9) and (4.10) and the factorization of the function D, we find the solution 
of (4.8) 

1F, I/c;% - is 
Q&J)=+ P--lest D+(p,E) (4.11) 

Hence and from (4.7) the following formula results: 

@r(p,E)==A 
(V+b) D+(P* 5) 

&W(P- ic&) 

Substituting (4.5) and (4.6) into (4.1), we obtain 

(4.12) 

(4.13) 

We find the value of the constant A for which the equality <I(O, x1, zJ=ZI(q, x2) holds. 
We derive the following asymptotic forms from (4.13) and (4.11) as p-+0: 

We hence obtain in 

Similarly 

r, e coordinates 

61' (0, r1r x2) = ACa-1n'I~f'Iz x 

L'/, (5~;l - $-a) cosv,e + ‘I, (cz_Z - cl-2-e) cosv,e1 

L’ (0 , x1, xS) = dc&‘f*r-‘l~/4 x 

[(c? - 5c;*) sin l/.$3 + (ci’ - c;“) sin s/$l] 

(4.14) 

(4.25) 

Comparing (4.14) and (4.15) with the asymptotic form (3.3), we find 

d_ "I=? x--l 
l/zs 1+x 

The function b" is constructed analogously. We present the final formulas 

5FF(pY Lx,)= - Y (p, E)(iE exp(- qls,)+ wexp(- qg~~)) 

5:'F(pT%7x2)= Y(p9t)(vlexp(- TI~x,)- vexp(-~2,)) 

Y(p,E)=d+- ;vD+(p,Q 

(4.16) 

5. An expression for the tensile stress intensity factor. BY virtue of the 
evenness of the function T the stress intensity factor KII equals zero. Applying the 
Parseval formula to (3.4), we find 

KI (P) = - &Gap2 f 5 TF (p, E, xp) ‘pIF (p, - g, xe) dt, dx, = 
0 -m 

- 4nyc;‘pz 5 z(P~5)(~P+++~)-l~,(P’- E)dE 
-0J 

(5.1) 

Using (2.2), (4.12) and (2.11, we obtain 

KI(P)=- 
2nAyc<'*c;Q+(i,o) 

p”’ (p”’ + c;lp) 
+ 4’~ P -4 %x 

00 

s 
(P”’ + ‘W” (1 p + q,)-’ 

i (E - W _m 
;;?f&D;(~ in;; d& 

1 

(5.2) 
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Integration along the axis Im E =0 can be replaced by integration counter-clockwise 
around the closed contour in the half-plane ImE< and enclosing the points --ic,-'p and 
-ip’h, or after replacement by the variable iE =s, by integration over the segment (c,-"p,p'l* 
from the jump of the integrancl thereon. Therefore 

where 

Reverting to the originals in (5.31, we conclude that 

Since the 
we convert the 

function J(p) 
last integral 

is analytic in the plane with the slit along the negative axis, 
to the form 

i(t)= -& \ (exp@,W - 1) Jh%f& 
B 

where the path of integration S passes over the lower edge of the negative part of the real 
axis and then over the upper edge. As a result of the change of variable s = [(Q"*- q)z -f 41 C, 
in the integral (5.4) we obtain 

K1@)=- 
2nAye;"'~~~L), (1,O) 

p”’ (p”’ + c;*p) + J(P) (5.3) 

(5.5) KI (t) = 2nAyc;%,-VI, (1, 0) x 
(exp (c,?!) erfc (crt'/t) - 1) + j(t) 

j(t)=-&@\” exp(t~)~(~)~~~ a>0 
a& 

J (ClQQ) = - 
2Ayc;‘%p4 (9”’ - *) 

2-Q 
H (- q-‘11) 

Here 

H(s)=51/~(p~-~(1-_(1-t”)~)‘)~(l--(l+S)r) dr 

(1 t P$ (1 - (1 -t- 4 4) (1 - (I + s) 2) 

$(a)= arctg 
4a=J@=GI/al 

(W - &*)a 

(5.6) 

(5.7) 

tp‘2 = w,-l, BEi = cock-‘) 

Using the relationship H(-5) = Ho, we transform the expression for the function j 
to the form 

Substituting the expression obtained for j into (5.5) and removing the assumptions a = 1 
and Ta = 1, we arrive at a representation for the tensile stress intensity factor 

Kl (t) = T,,y e a’WJ*M (ac;‘t-“1) (5.3) 

11 + (5.9) 

(the functions H and Q are introduced in (5.6) and (5.7)). Note that the form of the function 
M is determined completely by Poisson's ratio. A graph of the function M is presented in the 
fiqure for v=O.3. 



255 

6. The asymptotic form of G(t). It follows from (5.7) that Q is a smooth function 
for Re 52 0, where 

-MfhJ 

c.at_ 

~(a)da+O(lEI-3 IEl-m 
1 

The asymptotic forms 

H(z) = -51~s + O(lzj-I), IzI+ 00, Rez>O 

H(z) = H(O) + 0 (I 'c I), l T I -+ 0 
hence follow. 

Substituting the relationships obtained into (5.9), 
we find 

M(k)=-~k-‘h+O(k-l), k+oa (6.2) 
R 

This enables us to writethefollowing asymptotic formulas: 

KI (t) - - f r (+) Toy G a’W4, ci’a < t’l: 

K1(t)-- +$$ T,yG Q (0) (c,t)$ $a > t% 
R 

In both cases tensile stresses originate under sudden cooling (T,(O), and compressive 
stresses under heating (T,>O). The first of the asymptotic forms presented is in agreement 
with that obtained in /5/ for the quasistatic temperature problem (i.e., for c, = 0). 

In the case when T,<O an asymptotic form of the time t* of the beginning of crack 
propagationisderived from the asymptotic form KI. Indeed, t* is the least time satisfying 
the equation Kr(t*)= KIC, where Klc is the critical value of the tensile stress intensity 
factor. By virtue of (5.8), this equation is equivalent to the following 

k-‘l*M (k) = (Toy kk)-’ + , k= 
+ 

3 

Using the asymptotic form (t.l), we find that 

t* - n (if- 4 KIC 
4l' (a/,)y (x - 1) IZ'~T~ > *, I T,Iyac?‘< Klc 

while the relationship 

(6.5) 

follows from (6.2). 
The first of these asymptotic forms agrees with the quasistatic one /5/ while the second 

depends substantially on the inertial term in the dynamical equations of elasticity theory. 
Note that the fracture time is asymptotically independent of a for large values of the thermal 
diffusivity a. 

7. The case of a bounded domain. Let 61, be a plane domain with smooth boundary ro. 
There is a rectilinear slit 1 in '& that connects the origin O(O,O)EP, with the point 
A E rO. We understand r to be the contour ra supplemented twice by the traversed segment 
1 while B is the domain bounded by r. 

The temperature A is determined from the solution of the boundary value problem 

aNVat - a'AA = 0 on a ~(0, cm) 

A = T, on r x (0, m), A = 0 for t = 0 
(7.1) 

The displacement vector U generated by this temperature field is found from the solution 
of the following boundary value problem (n,r are the normal and tangential to I+) 

-pi%l&P + pAv + (I. + p)grad div v = y grad A on B x (0, w) (7.2) 

h divv + 2p&,l~n = yA on r x (0, 00) 

p @v,lh + Wan) = 0 on r x (0, -) 
v = &d& = 0 ,for t = 0 
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Let 
notation 
infinite 
will let 

The 
formula (5.8) for gr(t) 

Kj(Q (j = I, II) be the stress intensity factors at the apex of the crack I, keeping the 
KI for the tensile stress intensity factor in the case of a plane with a semi- 
slit. Let s be the distance between the apex of the crack and the boundary ro. We 
s be the characteristic dimension of the domain 52. 
main information concerning K1” (t) and RI, (1) can be obtained by combining the 

with the estimates 

where N is any positive 
and the geometry of the 

I KI(‘) (t) - KI 0) ] < L, I Ki? (0 I < L 
L = C~TOs’l~y (a2t/sa)N, 2t < cI-‘s, at’/* < 1 

(7.3) 

number, the quantity cs depends on Poisson's ratio Y, the number N 
bounaary r,,,but is independent of T,, 1, a, t. II . 

In particular it therefore follows that the asymptotic formula (6.3) holds for K+‘, (t) 
in the zone 2a%-'t < clcaaBt-’ <( 1 and the asymptotic formula (6.4) in the zone aaBet < 1 < c,%‘%-'. 
The asymptotic form (6.5) for the fracture time holds for 

1 T, / yac;‘~~ < KIc < [ T, 1 ya”~,-“~sx~~ 
and the asymptotic form (6.6) for 

[ T, 1 y min {sa%,'$ a~,-"*} > Klc 

Let us clarify how the estimates (7.3) are obtained. From dimensional analysis and 
because of the linearity of the problem we can confine ourselves to the case a== 1,E= 1, T,= 1, 
y= 1. 

Let Z',U denote the solution of problem (7.1) and (7.2) in the case when B is identical 
with the plane with a slit and let us.set A, = A - T, .f@ = tl - L’. The stress intensity factors 
generated by the displacements ~(0 will be denoted by Q~ft) (j = I, II). 

We obtain the following boundary value problem for A1 

aA,/aa - AAX = 0 on 66 x (0, CO): 
A, = 0 on I, A, = 1 - T on r. x (O,OO) 
A,=0 for t=o 

Let B* be a circle with centre at the point 0 of radius d,Zdjs. According to the 
estimate obtained earlier (/5/, Sect.3) I&(& *)\lb(Rd)<C#. Hence, and from the known local 

energy estimate it follows that /Igrad A, (t, .)ULtBa, < c#. Applying these estimates to a~A~/~f~, 

we find 

nak& (t. .)latk[lrecB,, +nakgradAl(t, ~)/alLI~(sd)6 CNtN (k = I,% . . .) 

The displacement vector u(r) satisfies the boundary value problem 

--p&#iat~ + ~Au (1) + (h + p)grad div z&l) = grad A, 

US1 (Jl)) = ozl (JQ) = 0 on 1 x (0, CO) 

a,,@&‘)-u)=--A, % (8) - u) = 0 on PO x (0, CO) 
.(I) = &mat = 0 for t = 0 

Using the standard energy estimate for the solution of a dynamic ~a& system, we conclude 
that 

Therefore ,A@)+ (h + )~)grad div @ = 0 (tN) in B,+ Moreover ,yp (do) = o,, (tic)) = 0 for 3% = 0, 
c,t - d < q < 0. Applying local estimates of the solutions of elliptical Lame systems and 
representations for the stress intensity in the stationary case /l, 5/, we obtain the estimate 

1 QI (:) I< CNtN+ 
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