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THERMAL SHOCK IN A DOMAIN WITH A CRACK

V.A. KOZLOV V.G. MAZ'YA and V.Z. PARTON

Thermal shock, i.e., the action of stresses caused by an abrupt change
in temperature, in a plane with a semi-infinite slit, is investigated.
It is assumed that the plane has zero temperature at the initial instant,
and a certain non-zero temperature acts instantaneously on the slit.
The main result is the representation (5.8) of the tensile stress
intensity factor SIF). The Laplace transform of the SIF is found by
using a method proposed in /1/ for evaluating the coefficients in the
asymptotic form of the solutions of elliptical boundary value problems
near a boundary singularity. Such an approach enables one to
find the SIF bypassing the solution of the initial dynamical
thermoelasticity problem.

Asymptotic expressions for the SIF are derived from the formulas for
the SIF, as well as for the time of fracture under instantaneous cooling
of the crack edges. Thermal shock is also considered in a bounded plane
domain with a rectilinear slit. It is shown that the principal term of
the SIF asymptotic form for small values of time agrees with the SIF for
the same problem in a plane with a slit. The expectation value of the
heat shock can be obtained by the simultaneous solution of the heat
conduction equation and the thermoelasticity system taking inertial terms
into account. The first analytic solution of such a dynamic problem
was found in /2/, where the thermal shock was considered in an elastic
half-space for sudden heating of its boundary. References to other
literature in the same area can be found in /3/.

1. Formulation of the boundary value problems. wWe will confine ourselves to
considering plane strain; the case of the plane state of stress for zero heat transfer from
the external medium is obtained by replacing the Lamé constant A by A, = 2Ap (A + 2p), and ¥
by T = (1 — 29)y/(1 — %), where v = 2por(1 + v}{1 —2v), p is the shear modulus, Or is the
coefficient of linear expansion, and v is Poisson's ratio.

Let G be a plane with an excluded semi-axis I = {z =(2,2):% = 0, 2, {0}, We assume
that at the initial instant ¢ has zero temperature and the slit'T then instantaneously
acquires a constant temperature T,. The temperature drop results in the generation of a
state of stress in G and it is required to determine the stress intensity factors K; {t) ang
Ky ().

Mathematically the problem becomes the following. The temperature T is determined from
the solution of the boundary value problem

aT/ot — a*AT =0 on G X (0, o) (1.1)
T=Tson T'X{0, o) =0 fort =10

The disgplacement vector u generated by this temperature field is found from the solution
of the following boundary value problem:

—pd®%u/0t* + pAu -+ (A + p) grad divu = ygrad 7 on (1.2)
G X {0, o)

0o = yT, 05 =0 on T' X (0, o0)

u=20uldt =0 for t =20

(Oam = A div ubpm + 2p (Bu,/Oxm + Oumldz,))

To simplify the computations we temporarily assume that a =1 and Ty=1,

2. Determination of the temperature. after a Laplace transformation, we obtain
the following boundary value problem from (l.1l):
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pT — AT =0 onG; T=ptonT
We seek T in the form

o0

T(pray zg)= § T7(p, b z)) exp (iz8) dt

—o0

Then
TF (p, & =) = v (p, Yexp (—Vp T B x)
By virtue of the evenness of the function T, we obtain that
aT/zy, =0 for z, =0, 2, >0

Therefore t{p, & Vp + & is an analytic function for Im&>0 while T (p, &) — p™t 8(%)
is an analytic function for Im{ << 0. Utilizing the formula

1 1
SO ==y — mETO 1)
we find
/s eyt
(P 8= — gy P+ B (2.2)

3. Asymptotic form of the stresses at the slit apex. It follows from /4/ that
the same asymptotic formula is valid for the Laplace transform of the displacement u (p, Zi, T3}

as r—>0 as in the case of the plane static problem of elasticity theory. The following
representation /5/ holds for the stress intensity factors Ki(p) and Ki1(p)
K;(p)=v\grad Ttdz — y{ Tty dz,, =111 (3.1
G r

where U/ (p, ) is the solution of the homogeneous problem

—pp?U + pAU + (A + p)grad divU =0 on G (3.2)
Gy = 05y = 0 on I’ with the following asymptotic form as z— 0°
g (p, @) =2 (2) + 0(1) (3.3)

(Z, Zg) (ry ©) = [2 (1 + %) )1 ¥ (0)

Yl (8) = ((2x + 1) cos 3/,0 — 3 cos Y0, (1 — 2x) sin?/,6 4+
3 sin 1/,0)

P (B) = (sin /,0 — (2% -+ 1) sin 3/,8, cos V0 4+ (4 —
2x) cos 3/,8)

where % = 3 — 4v for plane strain and % = (3 — v)/(1 +v) for the plane state of stress.
It can be verified that condition (3.3) is eguivalent to the asymptotic form

Y(p, 2)>2(a), p—~0 (3.4)

The function {’ are constructed below in explicit form.
Integrating by parts in (3.1), we find

K,(p):—ygTdivcjdx
&

4., Construction of the functions ¢. Let (u;, us) be a solution of problem (3.2).
Ve introduce the wave potentials P @ /6/

__ ¢y [ __ a¢ Ay
ux—ﬁ-{"a—:’, Us = S~ hay (4.1)
Then as is well-known
cn*Ag, — p*¢, =0 on G, n=1, 2 {4.2)

(cx =V &+ 20)p, ca = Vlp)
The boundary conditions on the slit have the form

Oy = LAQ, +2p.(a'wl -——ﬂ’—)=0 on T (4.3)

Fxqd 8xy Oze



252

22y
Oxy 0y

Uzlzﬂ(?‘ + L 02¢2~):0 on I’

diry? 22

It follows from the asymptotic form (3.4) that the vector U = ¢! should be subject to
the conditions

Upn (p~ Iy _’"12) = (—1)n+1u’n (P» Z1s Z‘z)! n = 17 2

The following equalities therefore result:

012 (D, 1, —2;) = —TF4, (P, 20, 2,), Opp (P, 21y —2,) = Cpy (P, 21, T,
Pn (pv L1, _12) = (__.1)n+1 Pn (pv Zy, 12), n=1, 2

Let us examine problem (4.2) in the half-space z, >0 and let us append the condition

0, =0, 9, =0 for z,=0, 2, >0 (4.4)
to (4.3).
We will seek the functions ¢, in the form
@n (Pr Ty Tp) = S 07 (b, &, %) exp (iz;E) dE (4.5)
We obtain from (4.2)
@nF (D, B, 2,) = Dy (p, B) exp (—Ma2y) (na = V E + ¢ p?) (4.6)
Here that branch of the root has been selected for which the real part is positive for

Re p > 0.

As is usual, g, and §g. are henceforth functions that are analytic in the upper and
lower half-planes, respectively, such that g =g, — g_. We obtain from the second relation-
ship in (4.4) that @, is continued analytically into the upper half-plane, i.e. @, = O,

Because 0p =0, for 7, =0, —co << z; << 0, we find
2 2
Oy (p B = 3t 0y (p, ) @7

We obtain from the first relationship in (4.3)
(B + 1% Dy (p, B) + 2iEm, @, (p, B) =/_(p, §)

where f_ is a function analytic for Im§ <<O0.
Using (4.7), we arrive at the equality (R is the Rayleigh function)

LD 0, (p.H=1.(p ) (48)

R (p, E) = (B2 + n,»)® — 48,

Let us present known information concerning the function R (see /6, 7/, say). The func-
tion 1/R  has four branch points E = ~ic; ' p, E = 4-ie,”'p  and two poles § = ~licg™'p, where
cp is the surface wave, the Rayleigh wave, velocity, i.e., c¢gp 1is the positive root of the
equation

(22— —4Y 1 — ¢ %Y1 — ¢, % =0
We set

2 (o2 2
D(p.B)=2(G — ey LGRELE (4.9)

The function D is represented in the form of the product

D(p, b = D+(Pv §)D(p, &)

o1

1 ¢ o@
Dy (p)E)=exp [‘:T Slla:ttﬁlp'dm}
b

o ]/c;* —aVer— o?

(2c® — c;’)’

4
¢ (2) = arctg

Factorization of the function 13 has the form

m=Va'p+itVa'p—i (4-10)
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Those branches of the roots are taken on the right for which the real part is positive
for a positive real part of the radicand.
Utilizing (4.9) and (4.10) and the factorization of the function D, we find the solution

of (4.8)
Vc p—
Oy (p, )= tE — ,cg D, (p,®) (4.11)

Hence and from (4.7) the following formula results:

D, (p,})—= A €'+ " D, (. &)
(P § oV ot & (o o) (6.12)
Substituting (4.5) and (4.6) into (4.1), we obtain
T (.8 7) = @y (.8 | exp (~ myzy) — 1y 0xp (— ) ) (4.13)

67 (b 2 = — Du (p, a)(E ;g'- exp (— ;) + ik oxp (— ny7y))

We find the value of the constant A for which the equality I (0, zy, z,) = Z' (24, z,) holds.
We derive the following asymptotic forms from (4.13) and (4.11l) as p-—0:

(e3> — ) (B + m?) pP= qir
Q{F(Pyg,xz)"'q)a(lhg)( 2 147'1]&' - _zllglz)x
oxp (— |&[z,) ~ 2_‘;‘; (c;a exp (— i %) & — 0y —

(ca® — i) 7y oxp (— i ) (& -+ 10)%) exp (— [&] zy)

We hence obtain in r, 8 coordinates
LI, zy, x,) = Acgim'lr™r X (4.14)
[V (56172 — ¢572) cos1/0 + Y, (c;7® — ¢172) cos ¥/,0]
Similarly
8a1 (0, 2y, 2g) = AcRnhr—hj4x (4.15)
(6" — 5¢c3%) sin /8 + (c3" — 1) sin/,8]
Comparing (4.14) and (4.15) with the asymptotic form (3.3), we find

a¥*p w—1

= Voa T¥x

(4.16)

The function {! is constructed analogously. We present the final formulas

1 (pr B aa) = — ¥ (p, ) (B exp (— myzy) + 2 exp (— my2y))

G (p Bz =¥ (p, B) (g exp (— myzy) — ;t,, exp (— n,2y))

i ch P —

‘F(p,g): = "'p__'w‘_“a

D,(p,¥)

5. An expression for the tensile stress intensity factor. By virtue of the
evenness >f the function T the stress intensity factor Ki1 equals zero. Applying the
Parseval formula to (3.4), we find

Ki(p)=—4ma’p*§ § T7(p. & z) o (p, — B, 2,) dde, = (5.1)

o0
o

— 4y § T DV P T B+ ) O, (p, — B dE
Using (2.2), (4.12) and (2.1), we obtain
2ndye]* D, (1,0)
‘/. (p'/' + c'lp)

Fohrdy ™ e oy (@D =8
S i(E——iO) (Vp+§ +'fh) Vc;"p—ii (p+icBE) E

Ky(p)==— + Ayerpthix (5.2)
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Integration along the axis Im & =0 can be replaced by integration counter-clockwise
around the closed contour in the half-plane Im §<C0 and enclosing the points —ic,'p and
—ip's, or after replacement by the variable (£ =35, by integration over the segment (c;"'p, p'/*
from the jump of the integrand thereon. Therefore

2ndyee®*D, (1, 0)

K = — J 5.3
I(P) 7 7 (P s ¥ C{IP) + (p) ( )
where
App~thep® iy D (pis) Vplh—s P —28
, 18 *— “‘
J(py=—2-—p S £ (2 oL el (5.4)
P L. V s—cyp R

4P
Reverting to the originals in (5.3}, we conclude that

Kr (t) = 2ndye; e ™D, (1, 0) X (5.5
(exp (%) erfe (et) — 1) + j (1)
ouf-ioo
J =5 \ exp@p)/(p)dp a>0

oo

Since the function J(p) is analytic in the plane with the slit along the negative axis,
we convert the last integral to the fom
2
oo Clexp eyt — 1) 7 ) dg
]

=

where the path of integration S passes over the lower edge of the negative part of the real
axis and then over the upper edge. As a result of the change of variable s=1[{¢— gz + ¢l¢
in the integral (5.4) we obtain

ZAYC;"/’Q—V‘ (q‘/x — q)

J (o) = — =2

H(—q")

Here

1 —_—
=)/ R G2l aet—(itan g, .6)
. A+Pr (1 — (4t~ +s)a)
Be
i
0@ =exp [+ {21 da] 6.7
1
4o it ot — 1
¥ (o) = arctg LV By T

(B = c1e™’y Pr = crer™)

Using the relationship H(—s) = H(s), we transform the expression for the function j
to the form

3

ey 2y x—1 — o328 2~
j(t)= T H'“og(i exp {(— ¢,%z%)) 7% X

Im (55 8 ()

Substituting the expression obtained for j into {(5.5) and removing the assumptions a =1
and T, =1, we arrive at a representation for the tensile stress intensity factor

Ki(t)=Toy ’;;i ahhM (acit) (5.8)
M= ﬁ_ﬁg"__iﬁ’l B [exp (h~2) erfe (™) — 1] 4 (5.9)
R

2 Y1 exn = ) i ()

(the functions H and ( are introduced in (5.6) and (5.7)). Note that the form of the function

M is determined completely by Poisson's ratio. A graph of the function M is presented in the
figure for v==0.3.
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6. The asymptotic form of K;(f). It follows from (5.7) that Q is a smooth function
for Ret >0, where

1

Bs
QE) =1+ - \ b@da+O0(E[), &0
-M(h) i
1.6}
sk The asymptotic forms
e H{@t)=—afr+0(*[", |t|—> o0, Ret >0
" H@ =HQO) +0(x), |7[>0
hence follow.
& Substituting the relationships obtained into (5.9),
11 we find .
3
. y —_— —_— Vs
"o 25 : 17 77 Mp)=—— F( Z )+0(h ), h—0 6.1)
o 2VZB -
M(h)= BV ™ A+ 0mY), h—oo (6.2)
This enables us to write the following asymptotic formulas:
4 — _
Ki()~— 5T (5) T % = e, e <<t (6.3)
Zﬂﬁ,' ®—1 1 =1 1
‘Kl(t)“'—mToYmQ(O)(clt)”r aaz-th (6.4)

In both cases tensile stresses originate under sudden cooling (Te<<0), and compressive
stresses under heating (T,>>0). The first of the asymptotic forms presented is in agreement
with that obtained in /5/ for the quasistatic temperature problem (i.e., for ¢ = 0).

In the case when T,<<0 an asymptotic form of the time t* of the beginning of crack
propagation is derived from the asymptotic form Kj. Indeed, t* is the least time satisfying
the equation Ki(t*) = Ki¢, where Kjc is the critical value of the tensile stress intensity
factor. By virtue of (5.8), this equation is equivalent to the following

1 -1
1K ettt e

- . ®—1 .
1M (h) = (Tov 1 ) P =

a

Using the asymptotic form (¢.l), we find that

a(t+x%) Ky )4 "
e~ ( ' 6.5
T nanr, ) ' | Tolvec” <Ki (8.5)
while the relationship
]/nﬁR(i+u)ch-‘/. 4 ~
t* o~ Ic“1 1,
( 2V 2/ (x— 1) Q(O)T.,) v | Tolvacr™ > Kic (8.6)

follows from (6.2).

The first of these asymptotic forms agrees with the quasistatic one /5/ while the second
depends substantially on the inertial term in the dynamical equations of elasticity theory.
Note that the fracture time is asymptotically independent of a for large values of the thermal
diffusivity a.

7. The case of a bounded domain. Let Q, be a plane domain with smooth boundary Ty
There is a rectilinear slit ! in $ that connects the origin 0 (0, 0) &Q, with the point
AT, We understand TI' to be the contour I'y supplemented twice by the traversed segment
! while Q is the domain bounded by T.

The temperature A is determined from the solution of the boundary value problem

dA/ot — a®AA =0 on Q x (0, o) (7.1)
A=T,onT x (0, ©), A=0 fort =0

The displacement vector V generated by this temperature field is found from the solution
of the following boundary value problem (r, T are the normal and tangential to T)
—pd®/ot® 4+ pAv + (A + p)grad dive =ygrad A on R X (0, o) (7.2)
A div v + 2pdv,/0n = yA on T X (0, oo)
B (80,/8t 4 dve/dn) =0 on T X (0, oo)
v=20v/dt =0 fort=20
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Let K;® (j =1, II) be the stress intensity factors at the apex of the crack {, keeping the
notation Ky for the tensile stress intensity factor in the case of a plane with a semi-
infinite slit. Let s be the distance between the apex of the crack and the boundary I, We
will let s be the characteristic dimension of the domain Q.

The main information concerning XK () and K(fl) can be obtained by combining the
formula (5.8) for Kj{tf) with the estimates
|E® () — K ()| < L | KR 0| <L (7.3)

L = CyTs'hy (a¥/sY, 2t < ey7%s, at’h <1

where N is any positive number, the quantity Cxy depends on Poisson's ratic v, the number N
and the geometry of the bounaary T'y, but is independent of T, I, a, i
In particular it therefore follows that the asymptotic formula (6.3) holds for  Ki®(f)

in the zone 2a%% < ¢, %™ <€ 1 and the asymptotic formula (6.4) in the zone a* % <€ 1 < ¢, %%,
The asymptotic form (6.5) for the fracture time holds for

| To | vac™h <€ Ko <€ Ty | ya'he, is'h
and the asymptotic form (6.6) for

| To| v min {sa~les, ac,™0} > Kic

Let us clarify how the estimates (7.3) are obtained. From dimensional analysis and
because of the linearity of the problem we can confine ourselves to the case a=1,1=1,T,=1,

=,

Let 7T,u denote the solution of problem (7.1) and (7.2) in the case when 2 is identical
with the plane with a slit and let us.set A;=A— 7,u® =u-— v The stress intensity factors
generated by the displacements ¥ will be denoted by ¢@;®{ji=1,1I).

We obtain the following boundary value problem for A,

Aot — AN = 0 on QX (0, o0)
Aj=0 on I, Ay=1~TonT,; x (0, )
A, =0 for t=0

Let By be a circle with centre at the point O of radius d,2dgs. According to the
estimate obtained earlier (/5/, Sect.3) [A,(. ')"]&(Bd)ch‘N' Hence, and from the known local
energy estimate it follows that |grad A, (¢, ) HL’(Bd)gcng‘ Applying these estimates to  #%A/aik,
we find

16" s (t, -yor" | +19% grad Ay ¢, Yo lpp , <Oyt (k=1,2,...)
: L(By) ' (B S ON

The displacement vector #¥  satisfies the boundary value problem

—ptutVart + pAu® -+ (3 + p) grad div u® = grad A,

039 (uM) = a5y (M) =0 0N I X (0, c0)

Onn WP — ) = — A, Ope (Y —u) =0 0N Ty X (0, o)
u® = guWat =0 for :=0

Using the standard energy estimate for the solution of a dynamic Lame system, we conclude

that . .
o u® e, et I 40 S € 1Y for at<d

Therefore paa® -+ (4 + p) grad div ot = 0 (tN}_ in By Moreover oy (ulh) = oy M) =0 for z,=0,
e —d <z < 0. Applying local estimates of the solutions of elliptical Lamé systems and
representations for the stress intensity in the stationary case /1, 5/, we obtain the estimate
10, 1< e
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